Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation
نویسندگان
چکیده
In optimization, multiple objectives and constraints cannot be handled independently of the underlying optimizer. Requirements such as continuity and di erentiability of the cost surface add yet another con icting element to the decision process. While \better" solutions should be rated higher than \worse" ones, the resulting cost landscape must also comply with such requirements. Evolutionary algorithms (EAs), which have found application in many areas not amenable to optimization by other methods, possess many characteristics desirable in a multiobjective optimizer, most notably the concerted handling of multiple candidate solutions. However, EAs are essentially unconstrained search techniques which require the assignment of a scalar measure of quality, or tness, to such candidate solutions. After reviewing current evolutionary approaches to multiobjective and constrained optimization, the paper proposes that tness assignment be interpreted as, or at least related to, a multicriterion decision process. A suitable decision making framework based on goals and priorities is subsequently formulated in terms of a relational operator, characterized, and shown to encompass a number of simpler decision strategies. Finally, the ranking of an arbitrary number of candidates is considered. The e ect of preference changes on the cost surface seen by an EA is illustrated graphically for a simple problem. The paper concludes with the formulation of a multiobjective genetic algorithm based on the proposed decision strategy. Niche formation techniques are used to promote diversity among preferable candidates, and progressive articulation of preferences is shown to be possible as long as the genetic algorithm can recover from abrupt changes in the cost landscape.
منابع مشابه
Constrained Multi-Objective Optimization Algorithm with Ensemble of Constraint Handling Methods
Different constraint handling techniques have been used with multiobjective evolutionary algorithms (MOEA) to solve constrained multiobjective optimization problems. It is impossible for a single constraint handling technique to outperform all other constraint handling techniques always on every problem irrespective of the exhaustiveness of parameter tuning. To overcome this selection problem, ...
متن کاملCurrent and Future Research Trends in Evolutionary Multiobjective Optimization
In this chapter we present a brief analysis of the current research performed on evolutionary multiobjective optimization. After analyzing first and second generation multiobjective evolutionary algorithms, we address two important issues: the role of elitism in evolutionary multiobjective optimization and the way in which concepts from multiobjective optimization can be applied to constraint-h...
متن کاملEvolutionary Algorithms for Multiobjective Optimization
Multiple, often conflicting objectives arise naturally in most real-world optimization scenarios. As evolutionary algorithms possess several characteristics due to which they are well suited to this type of problem, evolution-based methods have been used for multiobjective optimization for more than a decade. Meanwhile evolutionary multiobjective optimization has become established as a separat...
متن کاملMultiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms
In this talk, fitness assignment in multiobjective evolutionary algorithms is interpreted as a multi-criterion decision process. A suitable decision making framework based on goals and priorities is formulated in terms of a relational operator, characterized, and shown to encompass a number of simpler decision strategies, including constraint satisfaction, lexicographic optimization, and a form...
متن کاملConstrained Optimization via Multiobjective Evolutionary Algorithms
In this chapter, we present a survey of constraint-handling techniques based on evolutionary multiobjective optimization concepts. We present some basic definitions required to make this chapter self-contained, and then we introduce the way in which a global (single-objective) nonlinear optimization problem is transformed into an unconstrained multiobjective optimization problem. A taxonomy of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Systems, Man, and Cybernetics, Part A
دوره 28 شماره
صفحات -
تاریخ انتشار 1998